Translate of Horospheres and Counting Problems

نویسندگان

  • AMIR MOHAMMADI
  • ALIREZA SALEHI GOLSEFIDY
چکیده

Let G be a semisimple Lie group without compact factors, Γ be an irreducible lattice in G. In the first part of the article we give the necessary and sufficient condition under which a sequence of translates of probability “horospherical measures” is convergent. And the limiting measure is also determined when it is convergent (see Theorems 1 and 2 for the precise statements). In the second part, two applications are presented. The first one is of geometric nature and the second one gives an alternative way to count the number of rational points on a flag variety.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Einstein metrics: Homogeneous solvmanifolds, generalised Heisenberg groups and Black Holes

In this paper we construct Einstein spaces with negative Ricci curvature in various dimensions. These spaces – which can be thought of as generalised AdS spacetimes – can be classified in terms of the geometry of the horospheres in Poincaré-like coordinates, and can be both homogeneous and static. By using simple building blocks, which in general are homogeneous Einstein solvmanifolds, we give ...

متن کامل

A Free Boundary Isoperimetric Problem in the Hyperbolic Space between Parallel Horospheres

In this work we investigate the following isoperimetric problem: to find the regions of prescribed volume with minimal boundary area between two parallel horospheres in hyperbolic 3-space (the area of the part of the boundary contained in the horospheres is not included). We reduce the problem to the study of rotationally invariant regions and obtain the possible isoperimetric solutions by stud...

متن کامل

The Parameterized Complexity of Counting Problems

We develop a parameterized complexity theory for counting problems. As the basis of this theory, we introduce a hierarchy of parameterized counting complexity classes #W[t], for t ≥ 1, that corresponds to Downey and Fellows’s W-hierarchy [13] and show that a few central W-completeness results for decision problems translate to #W-completeness results for the corresponding counting problems. Cou...

متن کامل

Mean-value property on manifolds with minimal horospheres

Let (M, g) be a non-compact and complete Riemannian manifold with minimal horospheres and infinite injectivity radius. We prove that bounded functions on (M, g) satisfying the mean-value property are constant. We extend thus a result of the authors in [6] where they proved a similar result for bounded harmonic functions on harmonic manifolds with minimal horospheres. MSC 2000: 53C21 , 53C25.

متن کامل

Equidistribution of Primitive Rational Points on Expanding Horospheres

We confirm a conjecture of J. Marklof regarding the limiting distribution of certain sparse collections of points on expanding horospheres. These collections are obtained by intersecting the expanded horosphere with a certain manifold of complementary dimension and turns out to be of arithmetic nature. This result is then used along the lines suggested by J. Marklof to give an analogue of a res...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013